

International Journal of Engineering, Management and Humanities (IJEMH)
Volume 2, Issue 4, pp: 162-165 www.ijemh.com

 www.ijemh.com Page 162

Smart Attendance Using Caffe and Open Face

B.Nageswara Rao
1,2,3,4Student, Lendi Institute of Engineering and Technology,Vizianagaram,AndhraPradesh Corresponding

Author: I.Keerthana,B.Aravind,A.Vandana,G.Sindhuja Naidu

Date of Submission: 06-07-2021 Date of Acceptance: 21-07-2021

ABSTRACT
Human Face Detection has become a major field of

interest in current resear ch because there is no

deterministic algorithm to find face(s) in a given

image further the algorithms t hat exist are very

much specific to the kind of image s they would

take as input and detect faces. The pro blem is
todetect faces in the given, coloured class gr oup

photograph. The approach, we take is a mixture of

heuristic and known algorithms.The main idea of

doing this project is decrease the continuous video c

apture for the face recognition attendance, where we

provide a single image which contains all the faces

the machine learning algorithm will detect all the fa

ces atonce and mark the attendance to those persons

who are in the picture.Face detection is the key poin

t in automatic face recognition system. This project i

ntroduces the face detection algorithm with the Mod
ule of OpenCV anda detailed analysis of the face det

ection and attendance to those faced will be

presented.

KEYWORDS: Supervised Learning, Deep

Learning, Feature Extraction, Computer Vision

I. INTRODUCTION
The face is one of the easiest ways to

distinguish the individual identity of each other.

Face recognition is a personal identification system

that uses personal characteristics of a person to

identify the person's identity. Human face

recognition procedure basically consists of two

phases, namely face detection, where this process

takes place very rapidly in humans, except under

conditions where the object is located at a short

distance away, the next is the introduction, which

recognize a face as individuals. Stage is then

replicated and developed as a model for facial image
recognition (face recognition) is one of the much-

studied biometrics technology and developed by

experts. There are two kinds of methods that are

currently popular in developed face recognition

pattern namely, Eigenface method and Fisher face

method. Facial image recognition Eigenface method

is based on the reduction of face dimensional space

using Principal Component Analysis (PCA) for

facial features. The main purpose of the use of PCA

on face recognition using Eigen faces was formed

(face space) by finding the eigenvector

corresponding to the largest eigenvalue of the face

image. The area of this project face detection system

with face recognition is Image processing.

In this paper i.e, Smart Attendance Using

Caffe and Open Face The model we developed is a

Supervised learning algorithm that takes a training

dataset of faces and then recognizes the faces based
on the data set provided to the algorithm for this

purpose we used a deep learning framework Caffe

and Open Face as our algorithms to obtain the final

output.

The algorithm we developed is a deep

learning framework. Deep learning is the new big

trend in machine learning. It had many recent

successes in computer vision, automatic speech

recognition and natural language processing .Due to

its adverse features we have chosen DL framework

for more efficiency and accuracy.
For this we will use some Python code and

a popular open source deep learning framework

called Caffe to build the classifier. Our classifier

will be able to achieve a classification accuracy of

97%.

II. PROBLEM DEFINITION
Our goal is to build a deep learning

algorithm capable of recognizing the correct faces
for marking the attendance of a particular student

without any interference of the professor. In Deep

Learning, this type of problem is called

classification.(here present or absent for each

student).

III. CLASSIFICATION USING

TRADITIONAL MACHINE

LEARNING AND DEEP LEANING
Classification using a machine learning algorithm

has 2 phases:

International Journal of Engineering, Management and Humanities (IJEMH)
Volume 2, Issue 4, pp: 162-165 www.ijemh.com

 www.ijemh.com Page 163

 Training phase: In this phase, we train a

machine learning algorithm using a dataset

comprised of the images and their corresponding

labels. The training phase for an image classification

problem has 2 main steps:

 Feature Extraction: In this phase, we

utilize domain knowledge to extract new features

that will be used by the machine learning algorithm.

HoG and SIFT are examples of features used in
image classification.

 Model Training: In this phase, we utilize a

clean dataset composed of the images' features and

the corresponding labels to train the machine

learning model

 Prediction phase: In this phase, we utilize

the trained model to predict labels of unseen

images.In the prediction phase, we apply the same

feature extraction process to the new images and

we pass the features to the trained machine learning

algorithm to predict the label.

The main difference between traditional
machine learning and deep learning algorithms is in

the feature engineering. In traditional machine

learning algorithms, we need to hand-craft the

features. By contrast, in deep learning algorithms

feature engineering is done automatically by the

algorithm. Feature engineering is difficult, time-

consuming and requires domain expertise. The

promise of deep learning is more accurate machine

learning algorithms compared to traditional machine

learning with less or no feature engineering.

Machine Learning Phases Vs Deep Learning Flow

IV. CONVOLUTIONAL NEURAL

NETWORKS
Convolutional Neural Networks have different types

of models developed recently in that we have used

the CAFFE and OPEN FACE for our algorithm

CAFFE Overview

Caffe is a deep learning framework developed by

Berkeley Vision and Learning Centre (BVLC),

released under the BSD 2-Clause license. Nvidia

Digits is based on Caffe and can be used as GUI and

convenient interface for multi-GPU systems. The

Caffe framework offers more flexible CNN

architectures than any other DL framework and is

highly optimized for speed by

CUDA and CuDNN support. It is written in C++

and has Python and Matlab bindings.

There are 4 steps in training a CNN using Caffe:

 Step 1 - Data preparation: In this step, we

clean the images and store them in a format that can

be used by Caffe. We will write a Python script that

will handle both image pre-processing and storage.

 Step 2 - Model definition: In this step, we

choose a CNN architecture and we define its

parameters in a configuration file with extension

.prototxt.

 Step 3 - Solver definition: The solver is
responsible for model optimization. We define the

solver parameters in a configuration file with

extension .prototxt.

 Step 4 - Model training: We train the

model by executing one Caffe command from the

terminal. After training the model, we will get the

trained model in a file with extension .caffemodel.

After the training phase, we will use the .caffe

trained model to make predictions of new unseen

data. We will write a Python script to this.

https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://developer.nvidia.com/digits
https://developer.nvidia.com/digits
http://caffe.berkeleyvision.org/
https://developer.nvidia.com/cuda
https://developer.nvidia.com/cuda
https://developer.nvidia.com/cudnn

International Journal of Engineering, Management and Humanities (IJEMH)
Volume 2, Issue 4, pp: 162-165 www.ijemh.com

 www.ijemh.com Page 164

SOURCE CODE

1. TO EXTRACT EMBEDDINGS FROM

THE IMAGE

from imutils import paths import face_recognition

import pickle

import cv2 import os

#get paths of each file in folder named Images

#Images here contains my data(folders of various
persons)

imagePaths = list(paths.list_images('Images'))

knownEncodings = [] knownNames = []

loop over the image paths for (i, imagePath) in

enumerate(imagePaths):

extract the person name from the image path

name = imagePath.split(os.path.sep)[-2]

load the input image and convert it from BGR

(OpenCV ordering)

to dlib ordering (RGB)

image = cv2.imread(imagePath) rgb =
cv2.cvtColor(image,

cv2.COLOR_BGR2RGB)

#Use Face_recognition to locate faces boxes =

face_recognition.face_locations(rgb,model

='hog')

compute the facial embedding for the face

encodings = face_recognition.face_encodings(rgb,

boxes)

loop over the encodings for encoding in

encodings:

knownEncodings.append(encoding)
knownNames.append(name)

#save emcodings along with their names in

dictionary data

data = {"encodings": knownEncodings, "names":

knownNames}

#use pickle to save data into a file for later use

f = open("face_enc", "wb")

f.write(pickle.dumps(data)) f.close()

2. TO DETECT FACES (Training the

Model)

from sklearn.preprocessing import LabelEn coder
from sklearn.svm import SVC import argparse

import pickle

construct the argument parser and parse the

arguments

ap = argparse.ArgumentParser() ap.add_argument("-

e", "-- embeddings", required=True,

help="path to serialized db of facial embeddings")

ap.add_argument("-r", "-- recognizer",

required=True,

help="path to output model trained to recognize

faces")

ap.add_argument("-l", "-- le", required=True,

help="path to output label encoder") args =

vars(ap.parse_args())

load the face embeddings

print("[INFO] loading face embeddings...") data =

pickle.loads(open(args["embeddings "], "rb").read())

encode the labels

print("[INFO] encoding labels...") le =

LabelEncoder()

labels = le.fit_transform(data["names"])

train the model used to accept the 128-d

embeddings of the face and

then produce the actual face recognition

print("[INFO] training model...") recognizer =

SVC(C=1.0, kernel="linear", probability=True)

recognizer.fit(data["embeddings"], labels)

import os

#find path of xml file containing haarcascade file

cascPathface = os.path.dirname(cv2. file) +

"/data/haarcascade_frontalface_alt2.xml" # load the

harcaascade in the cascade classifier

faceCascade = cv2.CascadeClassifier(cascPathface)

load the known faces and embeddings saved in

last file

data = pickle.loads(open('face_enc', "rb").read())

#Find path to the image you want to detect face and

pass it here
image = cv2.imread(Path-to-img) rgb =

cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

#convert image to Greyscale for haarcascade

gray = cv2.cvtColor(image,

cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(gray,

scaleFactor=1.1, minNeighbors=5, minSize=(60,

60), flags=cv2.CASCAD

write the actual face recognition model to disk

f = open(args["recognizer"], "wb")

f.write(pickle.dumps(recognizer)) f.close()

write the label encoder to disk f = open(args["le"],

"wb") f.write(pickle.dumps(le)) f.close()

3. FACE RECOGNITION IN IMAGES

import face_recognition import imutils

import pickle import time import cv2

E_SCALE_IMAGE)

the facial embeddings for face in input encodings

International Journal of Engineering, Management and Humanities (IJEMH)
Volume 2, Issue 4, pp: 162-165 www.ijemh.com

 www.ijemh.com Page 165

= face_recognition.face_encodings(rgb) names = []

loop over the facial embeddings incase # we have

multiple embeddings for multiple fcaes

for encoding in encodings:

#Compare encodings with encodings in

data["encodings"]

#Matches contain array with boolean values and

True for the embeddings it matches closely

#and False for rest

matches =

face_recognition.compare_faces(data["enco dings"],

encoding)

#set name =inknown if no encoding matches
name = "Unknown"

check to see if we have found a match if True in

matches:

#Find positions at which we get True and store them

matchedIdxs = [i for (i, b) in enumerate(matches) if

b]

counts = {}

loop over the matched indexes and maintain a

count for

each recognized face face for i in matchedIdxs:

name = data["names"][i]
counts[name] = counts.get(name, 0) + 1 name =

max(counts, key=counts.get) names.append(name)

for ((x, y, w, h), name) in zip(faces, names):

rescale the face coordinates

draw the predicted face name on the image

cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255,

0), 2)

cv2.putText(image, name, (x, y),

cv2.FONT_HERSHEY_SIMPLEX,

0.75, (0, 255, 0), 2)

cv2.imshow("Frame", image) cv2.waitKey(0)

V. OBESERVATIONS
From the above model we can easily mark

the attendance of a person automatically with out

any human intervention. This model can be used by

professors in a college,employees in a company,staff

in an organization etc. It works in a efficient way

like a unique biometric system does without any
high configuration systems

REFERENCES
[1]. Beymer, D. and Poggio, T. (1995) Face

Recognition From One Example View, A.I.

Memo No. 1536, C.B.C.L. Paper No. 121.

MIT

[2]. Adelson, E. H., and Bergen, J. R. (1986) The

Extraction of Spatio-Temporal Energy in
Human and Machine Vision, Proceedings of

Workshop on Motion: Representation and

Analysis (pp. 151-155)

Charleston, SC; May 7-9

[3]. Heisele, B. and Poggio, T. (1999) Face

Detection. Artificial Intelligence Laboratory.

MIT

